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Abstract— In this study we present a new free tool-chain for
model based control design for mechatronic plants applicable
to small embedded systems based among other software on the
open simulator Scilab-XCos. After a very short introduction
of model based design terms this article focuses on the code
generator and the other programs of the tool-chain. The
design concept is demonstrated by an adaptive self tuning
control (STC) of the cart and pendulum system in gantry
crane configuration in simulation and on a real laboratory
experiment.

Index terms: open source, code generation, Scilab-XCos, model
based control, parameter identification, embedded systems

I. INTRODUCTION

Model-based design (MBD) is a mathematical and visual

method of addressing problems associated with designing

complex control, signal processing and communication sys-

tems. It is used in many motion control, industrial equipment,

aerospace, and automotive applications. Model-based design

is a methodology applied in designing embedded software.

During the past years there is a growing interest of more

and more medium to small size engineering companies in

order to cut down development time and costs. Common

tool-chains are quite expensive commercial solutions due to

the origin of MBD in aerospace and automotive industries.

Commercial code generators for Matlab-Simulink (M&S)

– one of the most complete tool-chains in MBD –, Dymola,

etc. do exist. On the other hand, INRIA and others provide

free code generators for the outdated Scilab-Scicos – an

open source pendant of M&S, e.g., [2], [3], and some more.

Scilab-XCos made a major development step concerning the

user interface in the last two years but unfortunately the

former free code generators do not work anymore. To the

best knowledge of the authors there is only one commercial

implementation for the new Scilab-XCos suitable for embed-

ded systems.
The main idea presented in this paper is the MBD control

development for mechatronic plants with a complete free

(or low-cost if target hardware is included) tool-chain from

the modeling and control design to the hardware realization

using an integrated development environment (IDE). Possible

fields of application for such a low-cost development tool-

chain are teaching courses and companies interested in

testing this new technology or dealing with MBD projects

of moderate complexity.
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Fig. 1. MBD and the tool-chain.

This paper is organized as follows. Starting with a short

description of the parts of the whole tool-chain we focus

on the details of the code-generator itself. Afterwards, an

adaptive control law for the cart-and-pendulum system is

derived as a non-trivial application. Finally, the model based

design process is demonstrated by the implementation of this

controller on a low-cost embedded system board.

II. MBD – THE TOOL-CHAIN

For the major development steps of a model-based con-

troller design (plant modeling and system identification (1),

control design (2) and simulation (3), code generation (4)

and transfer to the target (5)) the reader is referred to Fig. 1.

(1) An ideal tool-chain allows to model a mechatronic

plant from an engineering point of view, i.e., the plant model

can be directly built from physical blocks (e.g., mass, spring,

damper, resistor, capacitor, ...). This model can be simulated

and additionally, the system equations (e.g., ODEs) are avail-

able in symbolic form. This makes symbolic analysis and

symbolic control design possible. The physical parameters

of the real plant are determined by system identification with

real plant measurements and verified by simulation experi-

ments. (2) A controller structure is chosen based on the type

of plant, performance requirements, etc., and the controller

parameters are calculated with the help of the identified

plant parameters. Often the used plant model is somehow

idealized in order to obtain smaller control structures. (3)

The fulfillment of the control performance requirements is

verified by closed loop simulation experiments. For this

purpose, the verification plant model should be as near as

possible to the real plant. (4) Realizable control code for the

target automation system must be generated. In order to avoid

programming errors and remove the requirement of target

system specific knowledge automatic code generation from
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the controller verification simulation, see Fig. 2, is at least

desirable. (5) Finally, the target system has to be programmed

and tested on the real plant. The real experiments can be

measured and analyzed.

The proposed tool-chain: (1) The derivation of a plant

model in symbolic form as a basis for control design can

be done per hand or with, e.g., commercial (Mathematica,

Maple) or free (Maxima, SymPy, Sage) tools but is not

considered in this paper. An obtained signal based type of

plant model (e.g., ODEs) can be implemented in the standard

Scilab-XCos. Scilab is a free and open source software

for numerical computation maintained by Scilab Enterprises

similar to the commercial Matlab from Mathworks. The

graphical dynamical system modeler in Scilab is called XCos

and the counterpart to Simulink from Mathworks. From an

engineering point of view, the out-of-the-box incorporation

of the Modelica based Coselica (see [7]) is a valuable tool

for designers used to standard electrical and mechanical

system blocks and especially of interest for a more realistic

verification plant model of step (3). Linear control design

and system identification is done inside Scilab (part of step

(1) and step (2)). The major contribution of this paper is

to the steps (4) and (5) and is discussed in more detail in

the following section. Concerning step (4) there are several

possibilities to generate C-code from an existing XCos (or

the former SciCos) schematics. In order to name a few:

• Gene-Auto, [3] : The Gene-Auto project has created

an open-source tool set which converts an application

described in a high-level modeling language like Scicos

to C-code. Unfortunately, this tool – apart from a

commercialized toolbox – only works with the previous

version of Scilab, called Scicos.

• Realtime Linux as target system, [2]: It is one of the

longer known tool-chains, but it supports the outdated

Scicos and is not really applicable to small embedded

systems, i.e. microcontrollers.

• Scicos-FLEX, [4]: It is somehow a port of [2] for some

microcontrollers, but outdated too.

Since all solutions are outdated (or commercialized) we make

use of our own generator X2C. As target for step (5) an ARM

Cortex-M device is discussed and the free EmBlocks, see [8],

is used. There, a general hardware project with the input-

output mapping for the STM32F4-discovery board (approx.

15$) has been implemented, that directly includes the auto-

generated controller code. In order to transfer the program

to the target, the discovery on-board debugging probe or a

free JTAG device, e.g., [9], can be used. Additionally, there

is ongoing development in order to establish an industrial

control system (PLC from Bernecker and Rainer, b&r) as an

industrial target. Further, the X2C Scope utility allows taking

measurements (free-run and triggered) and the X2C Com-

municator parameter modifications and interaction directly

from/on/with the target system. It is worth mentioning that

the range of features of Scilab can be extended with add-ons.

For example there exists a add-on called “plotting library”

that helps the user to make plots with a similar syntax as in

Fig. 2. Typical system model with plant (top) and controller (bottom).

Matlab – useful for step (5).

A. The code generator X2C

The predecessor of the code generator X2C, see [5], was

originally developed more then ten years ago at the JK-

University Linz, Austria as a Simulink extension generating

assembler code for TI-DSPs. Later, the system was extended

to generate C-code and to largely comply with MISRA

(S2C), see [6]. This long history and the simple effective

concept of the code generator system stand for stability of

its main kernel.

X2C natively includes into XCos and can be simulated

in parallel with plant and the controller, see Fig. 2. For

the plant blocks of the XCos library are used, Coselica in

this case. The controller part is modeled using dedicated

X2C-XCos blocks. These blocks are full featured XCos

blocks extended with an enhanced parameter editor and the

connection to the back-end for e.g. code generation. All

the glue code needed for these X2C-XCos blocks is fully

auto generated from the X2C block’s model. It is possible

and also available to automatically generate blocks for other

simulation environments. Special blocks are used to model

and specify the targets in-ports and out-ports which may

correspond to, e.g., analog, digital or PWM input or output

ports (IOs).

This system model shall be simulated to provide detailed

feedback about the expected performance of the overall

system for further optimization. In this simulation the blocks

are implementing exactly the code which will run on the

target. Thus effects like quantization, fixed point arithmetic

artifacts and discretisation are included in the simulation

model. In simulation the developer has easy access to all

signals of the plant and controller to analyse the behaviour

or to inject faults for testing.

To move on to the target implementation the model

transformation and code generation is executed by a single

mouse click. The model transformation will step through the

XCos model ignoring all non-X2C-XCos blocks to detect

all X2C-XCos blocks and their associated clock domain and

hence the sample time. X2C features the use of multiple

sample times for blocks. The result is an abstract model

implemented in Java holding all relevant information about

the blocks, their parameters and their connections. Further
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Fig. 3. The X2C Communicator with loaded model showing block’s
parameter.

on the code generator is applied on this abstract model using

methods from graph theory to check, to partition and order

the model and to generate the final code. The generated

code is written as substantially MISRA[6] conform ANSI

C code in object oriented style. During this process the

parameters specified in the blocks, usually in the continuous

time or frequency domain, are automatically converted to

implementation specific discrete time domain parameters.

During design of the code generator attention has been

paid on generation of human friendly, readable code. The

so generated code facilitates code review, debugging and

potential long term maintenance.

The central tool for the developer is the so called Com-

municator, see Fig. 3. The Communicator is the home of the

code generator (fixed-point, single and double data typing

is available) and the interface to the modeling / simulation

environment and the target. An optional part of X2C is a

quite basic operating system for various target platforms.

This operating system features the communication protocol

to connect the Communicator, a flash algorithm to deploy

the developed control software, to change parameters online,

to record data and more. In case of application of the

whole operating system no specific target IDE or hardware

programmer besides the target compiler is necessary, because

the host-target link is established by standard serial (UART,

USB) or network connections.

For effective development rapid feedback on changes in

design is valuable. With X2C the way from an adapted model

to a running system on the target is short even when the

whole tool chain of code generator and compiler has to be

applied. A highlight of X2C is that in many cases this is not

necessary. With X2C it is reality that e.g. parameters can

be changed in the model or in the Communicator and the

parameters on the target are updated instantly. That means

manually tuning controller parameters becomes a task of

selecting the block and parameter in the XCos diagram and

using the keyboard or mouse wheel to tune the parameter

while watching the plant and the automatically updated

Scope for feedback. The Scope, see Fig. 4, is featuring

functionality like a conventional oscilloscope. Through the

Fig. 4. X2C Scope: online access to IO ports, block ports, variables and
registers of the target.

Fig. 5. X2C Block Generator: generate templates for own blocks.

Scope the developer has access to online data of block ports,

I/O ports, variables and registers of the target in a way like

in the simulation environment.
1) User defined blocks: Own code fragments can be

incorporated into simulation and code generation with the

help of a dedicated block generator. The user specifies the

in- and outputs of the block and the X2C Block Generator

generates the necessary commented template files (in ANSI-

C) afterwards. The behaviour of the block is included into the

templates by the user again, and can be used for simulation

and implementation. In the demonstration application this

feature is applied in order to implement a recursive least

square algorithm for the adaptive controller.

B. EmBlocks and hardware programming

Most microcontroller developers require full insight into

the target programming and a (JTAG) hardware probe for

full on-chip debugging features instead the small operating

system approach already mentioned. Towards this end, we

use a free microcontroller IDE for target programming (step

(5) from above), see [8], that supports a vast number of

targets. EmBlocks is a full-featured free embedded IDE

with stack, register, etc. views and a number of supported

hardware probe interfaces. In Fig. 6 the initialization part of

the heavy commented X2C auto-generated code in EmBlocks

is presented. As soon as standardized names for block IOs

in XCos are used only one general template project is

required per target, where the hardware specific code parts

and especially the input-output mapping take place. As soon

as this is achieved for a specific target the user needs just to

press the compile and program button. As already mentioned,

the small operating system can be used alternatively.
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Fig. 6. The EmBlocks IDE with the generated initialization code.

C. Different Targets and step (5)

As for any other code generator the user acceptance

relies among other things essentially on the number of

supported targets. This is the reason why we favor two target

approaches, namely the tight integration by the small oper-

ating system approach best fitted for student use and rapid

controller prototyping on the real experiments, and the quite

versatile approach where all target hardware specific part is

done in the IDE (for the embedded systems programming

engineer). The tight integration approach requires some more

target specific details if a new target is made but releases

the user from target hardware interactions. The second IDE-

based approach is very easily extendable to new targets. At

the moment some TI targets and one for a STM32F0/1 do

exist using the small operating system approach.

For the STM32F4-discovery target discussed in this paper

we have chosen the free EmBlocks route for the first time.

The reason is the feature rich 32bit Flash CortexM4 based

MCU very well fitted for general control purposes:

• up to 180 MHz/225 DMIPS, with DSP instructions,

floating point unit (FPU; single precision) and advanced

peripherals

• 2 DAC 12bit, 3x 12bit ADC (24 channels)

• synchronized PWM-timers, quad-encoder channels

• available discovery-board (approx. 15$; programmer

and debugging probe already on-board; just requires

USB and serial (for scope) connection)

Towards industrial targets (Programmable Logic Controller,

PLC) there is ongoing development concerning the applica-

tion to a b&r Powerpanel (PP400) using the IDE approach

with the target specific Automation Studio.

III. APPLICATION: CART AND PENDULUM SYSTEM

As a reference application the well known cart and pen-

dulum system in gantry crane configuration is presented, see
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Fig. 7. The well known cart and pendulum system.
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Fig. 8. Armature equivalent circuit and power conversion of a dc drive
with external excitation.

Fig. 7. As common to real world crane applications at least

the equivalent length to the center of mass of the load is

unknown. Instead, we assume the equivalent length of the

pendulum rod l2 as unknown but constant. The cart with

mass m1 is driven by a dc drive with external excitation, see

Fig. 8.

In the following, we assume a very small electrical time

constant (τel = LA

RA
, with armature inductance LA and

resistance RA) compared to the mechanical one. By means

of system reduction, i.e, LA → 0, we introduce equivalent

parameters integrating the whole drive-train (drive constant

km, inertia JA, transmission ratio n, gear pinion radius r, and

some mechanical damping d1) into the mathematical model

of the cart. Other essential parameters are explained in Tab I.

m̃1 = m1 + JA

(n

r

)2

d̃1 = d1 +
n2k2m
r2RA

(1)

The model equations of the nonlinear reduced system are

written in the form M (q)q̈ = Q − C (q, q̇) q̇ − D (q, q̇),
with the mass matrix M (q), centrifugal- and Coriolis terms

C (q, q̇)q̇, dissipative terms in the vector D (q̇)and general-

ized forces Q. qT = [x, ϕ] denotes the vector of generalized

coordinates and [v, ω] the corresponding velocities. Further,

we use the abbreviation β = n km (r Ra)
−1

and the static
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Name Description

m1 mass cart
m2 mass pendulum
d1 friction coefficient cart
d2 friction coefficient pendulum
l2 length pendulum
JA moment of inertia of drivetrain
n transmission ratio
r radius pinion
km motor constant
RA terminal resistance

TABLE I

SYSTEM PARAMETERS.

friction FC is ignored in the model equations, because

it’s compensated in all measurements by the well-known

approach.

[

m̃1 +m2
1

2
m2l2cos (ϕ)

1

2
m2l2cos (ϕ)

1

3
m2l

2

2

]

·

[

v̇

ω̇

]

=

[

1

2
m2l2sin (ϕ)ω2

− d̃1v + βuA

−
1

2
m2gl2sin (ϕ)− d2ω

]

(2)

For the calculation of a linear state controller the system

has to be linearized. The linearized model (around qS =
[

xS ϕS vS ωS

]T
=

[

0 kπ 0 0
]T

, k = 0, 2, ...)
can be written as









∆ẋ

∆ϕ̇

∆v̇

∆ω̇









=











0 0 1 0
0 0 0 1

0 3gm2

m̄2

−
4d̃1

m̄2

6d2

l2m̄2

0 −
6gm̄1

l2m̄2

6d̃1

l2m̄2

−
12d2m̄1

m2l
2

2
m̄2











·









∆x

∆ϕ

∆v

∆ω









+









0
0
4β
m̄2

−
6β

l2m̄2









· uA (3)

with the substitutions m̄1 = m̃1+m2 and m̄2 = 4m̃1+m2

and unknown but constant pendulum equivalent length l2.

This completes the modelling part of step (1) and has to

take place outside the tool-chain.

A. System identification and adaptive control design

As already mentioned, the pendulum equivalent length l2
is assumed unknown but constant.

In order to get rid of the time derivatives the fourth

equation of the linearized system model is transformed from

the time-domain to the frequency-domain. For brevity, initial

states are assumed equal to zero and d2 = 0.

s2ϕ̂l2m̄2 = −6βûA − 6gm̄1ϕ̂+ 6d̃1sx̂ (4)

We apply the realizable stable filter with free coefficients

αi to both sides

F0 =
α0

s2 + α1s+ α0

(5)
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Fig. 9. Offline parameter identification with RLS in Scilab-XCos on true
measurements, l2=46cm.

s2

s2 + α1s+ α0

ϕ̂α0l2m̄2 = −

α0

s2 + α1s+ α0

ûA6β

−

α0

s2 + α1s+ α0

ϕ̂6gm̄1 +
s

s2 + α1s+ α0

x̂α06d̃1 (6)

see [10]. With standard polynomial division one eliminates

the non-strictly proper transfer function. Therefore, it is

sufficient to implement the two filters F0 (s) and F1 (s) =
sF0 (s). Both filters have common denominator and can be

realized as one dynamical system if applied to the same

signal. The inverse Laplace transform leads to one data line

of the algebraic equation system for identification

[

α0

(

ϕ−
α1

α0

F1 ∗ ϕ− F0 ∗ ϕ
)

m̄2

]

[

θ1
]

=

− F0 ∗ uA6β − F0 ∗ ϕ6gm̄1 + F1 ∗ x6d̃1 (7)

linear in the unknown parameter θ1 = l2, whereby

∗ indicates the convolution operator in time-domain. For

implementation purposes the filters have to be discretized.

The filter on plant input uA is discretized naturally by a

zero-order hold but the filters on the states have to be approx-

imated. A trapezoidal approximation, i.e., the Tustin method,

is usually sufficient without requiring an unnatural small

sample time compared to system dynamics. The unknown

parameter can be estimated using a standard recursive least

square algorithm. For identification results with true plant

measurements logged into a file and the RLS algorithm in

XCos the reader is kindly referred to Fig. 9. This completes

the identification part of step (1). For the adaptive self-tuning

control (STC) approach (step (3)) the filters and a standard

RLS algorithm is implemented in combination with a linear

state control law parametrized in l2, see below.

B. Experiment - Cart and pendulum

In order to demonstrate the physical modelling capabil-

ities the Coselica toolbox is used for plant modeling, see

pr
ep

rin
t -

- t
he

 fi
na

l p
ub

lic
at

io
n 

is
 a

va
ila

bl
e 

at
 li

nk
.s

pr
in

ge
r.c

om



Fig. 10. Cart with rod pendulum - Coselica.
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Fig. 11. Comparison of simulation and true experiment with standard state
control and known length l2.

Fig. 10. The quality of the overall model compared to the

true experiment can be seen in Fig. 11 where a standard

linear state controller based on fixed identified parameters is

implemented in simulation (step (3)) and real experiment

(steps (4) and (5)). Velocities are obtained by first order

derivative approximations.

1) Adaptive STC Control: In order to met the proposed

goal STC control with unknown but constant l2 is applied

to the simulated plant. The first 1.5s are used for settling

the online RLS identificator and the filters as derived above.

Then the parametrized control law uA = −k (l2)
T
x is

activated, see Fig. 12.

k =









−208.4l2
−8.4 + 201.8l2 − 138.9l2

2

9− 106.9l2
(17.3− 71.3l2)l2









As expected, the control law forces the pendulum angle to

zero at rest whereas a quite good positioning performance is

achieved for the cart.
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Fig. 12. STC control experiment (slashed lines means inactive signals),
l2=33cm, setpoint dashed and activated at approx. 5s.

IV. CONCLUSION

The presented work will be available for free – to a large

extend under a BSD license – within the Q2 of 2014, see

the references [5].

Ongoing development is targeted towards efficient hand-

ling of vectorized signal lines, Scilab-code to C-code con-

version, more block libraries, industrial targets, IEC 61131-

3 code generation (PLC), adaption of the FMI (functional

mockup interface) for model exchange with various commer-

cial simulators, and some state machine concept. For most

parts we plan to adapt again existing free tools.
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