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Abstract: In this paper we present free tools for model-based optimal input design and
parameter estimation. The discussed tool-chain is tailored for the needs of small- and medium
sized companies. Its programming core is based on Scilab and the JModelica platform and
features input design (DOE), optimal control problems (OCP), and parameter estimation.
Finally, the entire tool-chain concept is tested via simulation of a cart and pendulum system.
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1. INTRODUCTION

Model-based design (MBD) is a common and wide-spread
approach in various areas of application. Typical areas
can be found in automotive and aerospace industry where
motion control applications are prevalent. In course of
time, MBD processes have received more and more at-
tention in medium-sized and small businesses in order to
improve the efficiency of the development processes. How-
ever, the pricing of existing commercial software-tools like
Matlab/Simulink or Dymola may easily surpass necessary
budgets, for small companies in particular. That is the
rationale why we initiated to create a free alternative
that may help small companies getting started in MBD
processes. In Grabmair et al. (2014) an open source tool-
chain for model-based design of embedded systems was
presented. The focus of the contribution was on code gen-
eration. In contrast, to Grabmair et al. (2014), this work
extends the free tool-chain by the generation of optimal
excitation signals in combination with the solution of op-
timal control problems (OCP), and parameter estimation
in order to efficiently adapt the simulation experiments to
real plants.

It is very common that trajectories for mechanical systems
are generated by solving a particular optimization prob-
lem. Customary approaches include time optimal, energy
optimal, and other motion profiles. For decreasing mechan-
ical wear in the plant these profiles need to provide, for ex-
ample, smooth (rest-to-rest) movement in accordance with
restrictions in jerk, acceleration, and velocity. However,
smooth trajectories tend to contain insufficient excitation
information for identification. To this end, we propose to
exploit a measure for the information content concerning
some unknown parameters in the optimal control problem.

⋆ We gratefully acknowledge the support from the Austrian funding
agency FFG in Coin-project ProtoFrame (project number 839074).

This paper is organized as follows: After this short in-
troduction the considered class of models and necessary
assumptions are noted. Section 3 briefly summarizes how
to rephrase a parameter estimation problem as a solution
of an optimization problem. In Section 4 the optimiza-
tion problem for trajectory generation and optimal input
design is discussed. In Section 5 the free tool-chain for
physics-based modeling, OCP, input design and parameter
estimation is presented. Finally, the functionality of the
entire tool-chain is assessed and demonstrated on the well-
known cart and pendulum model in Section 6. Conclusions
are drawn in Section 7.

2. PRELIMINARIES

Within our paper we consider dynamical systems of the
form 1

ẋ = f(x,u,p)

y = h(x,u,p) (1)

with state vector x ∈ Rn, output vector y ∈ Rny , constant
(unknown) parameter vector p ∈ Rnp and input vector
u ∈ Rnu . These continuous-time systems are considered to
be evaluated at various time points tk, 1 ≤ k ≤ N , where
N is the number of measured samples. Furthermore, we
assume noise corrupted samples ym(tk) of the measured
output

ym(tk) = y(tk) +w(tk), 1 ≤ k ≤ N (2)

where ym(tk) are the k-th samples of all measured outputs,
y(tk) are the undisturbed outputs at time tk and w(tk) is
a sequence of uncorrelated white noise which is assumed
to be normally distributed with zero mean and variance
σ2
i , i = 1, ..., ny. Further, we assume that the variances are

known and constant with respect to time. The covariance
matrix of the residuals is assumed to be a diagonal matrix
with entries σ2

i on the primary diagonal.

1 For brevity, we drop time-dependency of input, state, and output.
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3. PARAMETER ESTIMATION

There are vast literature and numerous approaches for
parameter estimation for continuous-time systems, e.g.
evaluating certain system responses, Schmidt et al. (2010),
specific filtering techniques and standard least square
algorithm, see Slotine and Li (1991), modulating functions,
see Rao and Unbehauen (2006), to name but a few.
Continuous-time system identification can be done by
minimizing the cost function

J =
1

te − t0

∫ te

t0

eT(t)Q(t)e(t)dt ≈
N∑

k=1

eT(tk)Q(tk)e(tk)

where e(t) = ym(t)− y(p, t) (3)

with a symmetric, positive definite weighting matrix Q.
The abbreviation y(p, t) denotes the system output with
true parameter vector p.

For the moment, we assume a perfect model apart from
unknown parameters and an input signal with enough
‘excitation’ or ‘information’ for identification. The cost
function becomes zero in the case when the deviation
between measurement ym and simulation signal y is zero
on [t0, te] (undisturbed case). This is fulfilled when the
model is parametrized with the correct parameter values.
Minimizing the squared norm of deviation in the disturbed
case leads to the well-known optimization problem

min
p̂∈P

N∑
k=1

(ym(tk)− y(p̂, tk))
T(ym(tk)− y(p̂, tk)) (4)

with p̂ as estimation of the nominal parameter vector p.

4. OPTIMAL CONTROL PROBLEM AND INPUT
DESIGN

To ensure an input signal with sufficient ‘information’ for
identification we propose to combine the standard opti-
mal control problem with an input design approach. We
consider continuous-time systems (1) with outputs evalu-
ated at certain discrete points of time. Each measurement
consists of N samples and the initial guess of unknown
parameters p̂0 ≈ p is assumed to be chosen appropriate
for the task of input design.

For analyzing the information content of a measurement
we resort to the Fisher matrix F(u,p). This matrix indi-
cates how much information a number of ny measurable
system outputs contain about np unknown system param-
eters. This approach is assumed to be independent of the
method which is used for identification.

The likelihood for given vectors e(tk) is given by

pf (e(t1), e(t2), · · · , e(tk)) =

(2π)
−nyN

2

N∏
k=1

1√
σ2
1 · σ2

2 · · ·σ2
ny

e
− 1

2

∑N

k=1

∑ny

i=1

ei(tk)2

σ2
i (5)

The Fisher matrix is defined by Majer (1997)

F(u,p) = E

{
∂ ln pf (u,p)

∂p

∣∣∣∣
p,tk

∂ ln pf (u,p)

∂p

∣∣∣∣T
p,tk

}
(6)

in terms of expectation E and the likelihood pf (u,p) (5).
Taking into account that we take expectations and using

the assumption that the residuals have zero mean we may
also write

F(u,p) =

N∑
k=1

∂y

∂p

∣∣∣∣T
p,tk


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

. . . 0
0 · · · 0 σ2

ny


−1

∂y

∂p

∣∣∣∣
p,tk

where
∂y

∂p

∣∣∣∣
p,tk

=


∂y1
∂p1

∣∣∣∣
p,tk

· · · ∂y1
∂pnp

∣∣∣∣
p,tk

...
. . .

...
∂yny

∂p1

∣∣∣∣
p,tk

· · ·
∂yny

∂pnp

∣∣∣∣
p,tk

 (7)

describes the partial derivatives of the system outputs with
respect to some system parameters evaluated at a certain
discrete point in time tk.

For optimization purposes the above matrix has to be
considered in some meaningful metric. For this purpose,
various real-valued functions have been suggested as a
measure for size of the variance-covariance or the infor-
mation matrix. The most common are the so-called A-
criterion (trace of the matrix), D-criterion (determinant
of the matrix) or E-criterion (eigenvalue of the matrix).
The interested reader is kindly referred to Franceschini and
Macchietto (2008), also for a geometrical interpretation of
these criteria.

max
u

∥F(u,p)∥A/D/E−criterion

ẋ = f(x,u,p)

y = h(x,u,p)

x(t0) = x0

x(te) = xe

u ∈ U

x ∈ χ

Ṡx =
∂f(x,u,p)

∂x
· Sx +

∂f(x,u,p)

∂p
, t > 0

Sx(0) =
∂x0

∂p

Sy =
∂h(x,u,p)

∂x
· Sx +

∂h(x,u,p)

∂p
, t ≥ 0 (8)

The above-stated optimization problem with (forward)
state sensitivities Sx and output sensitivities Sy may in
practice be highly nonlinear. Necessarily, we thus shall be
satisfied with a suboptimal result.

5. THE TOOL-CHAIN

The tool-chain aims to cover plant modelling (Step 1 ),
basic model verification (Step 2 ), optimal excitation signal
calculation (Step 3 ) and parameter estimation (Step 4 ),
see Fig. 1.

Step 1: System modeling. System modeling can be either
done by implementing equations or by connecting physical
blocks in a system modeler. From an engineering point of
view it is a nice feature to build mechatronic plants by
connecting physical blocks (e.g., mass, spring, damper, ...).
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Step 1:

Plant-modelling

Scilab/Xcos

Step 2:

Simulation

JModelica-

platform

p_est Step 4:

Parameter-

estimation

Modelica-model

p_est

Step 3:

Input-designu_optim

Fig. 1. Tool-chain for MBD process with focus on input
design and parameter estimation

Step 2: Simulation. Model simulation for principle verifi-
cation of system behavior.

Step 3: Input Design. For an accurate estimation of the pa-
rameters an input signal with ‘high information content’ is
necessary. Therefore, the nonlinear optimization problem
for input design (8) has to be solved. To apply powerful
optimization algorithms the system equations are required.

Step 4: Parameter estimation. Choose one of the different
possibilities to estimate unknown system parameters, e.g.
solve the parameter identification optimization problem
(4). It may be highly nonlinear optimization problem,
however, there is no need to look for a formulation linear
in the parameters, what would be very hard to automate
for general engineering applications.

For Step 1 we use the open source software Scilab/XCos.
It serves as model editor. The platform for Step 2–4 is
JModelica. It is mainly used to solve the optimization
problems (8) and (4).

An open source software that may be used for plant
modeling with physical blocks is Scilab/XCos, see Scilab
Enterprises (2012). Scilab is a free software for numerical
computations similar to Matlab from Mathworks and
is published and developed by Scilab Enterprises. The
corresponding dynamic system modeler and simulator is
called XCos, a counterpart to Mathwork’s Simulink. In
Scilab version 5.4.1 the software has accomplished a major
development step and may be considered a useful applica-
tion for laboratory or smaller industrial projects. Systems
can be implemented via its differential equations (ODEs)
or by referring to the Modelica based XCos extension
Coselica, see Reusch and Jofret (2013). Coselica comprises
an implementation of standard Modelica libraries (e.g.,
electrical, heat transfer, planar mechanical, rotational me-
chanical, translational mechanical) and therefore, may
serve a sufficient number of models for most applications.
A Modelica file is generated automatically during the
simulation process in Scilab which also grants access to the
symbolic system equations as DAE’s. Even if the system is
converted into DAE’s in Modelica, we restrict ourselves to
systems of the form (1) for easy calculation of the necessary
sensitivities, see Remark in Section 6.3.

Solving optimization problems for input design, optimal
control, and parameter estimation requires powerful op-
timization algorithms. Unfortunately so far, optimization
algorithms included in Scilab do not use the system equa-
tions of XCos/Coselica to solve the highly nonlinear op-
timization problems that occur within input design and

parameter estimation. That is the reason why we use ad-
ditionally the open source platform JModelica. JModelica
is a Modelica-based open source platform for simulation,
optimization and analysis of dynamic systems with the
focus on optimization of models. It is developed by the
Department of Automatic Control, Lund University, see
JModelica.org (2014). JModelica supports optimization
of dynamic state models. While the system is described
in Modelica code, the optimization specifications are de-
scribed in the Optimica extension. JModelica encapsu-
lates a number of other free software packages. JModelica
provides different optimization algorithms. The automatic
differentiation based optimization algorithm relying on the
CasADi framework is used for solving optimal control
problems and parameter estimation problems. The applied
CasADi package is an open source software library for sym-
bolic automatic differentiation of functions. For solving
the nonlinear program (NLP) the IPOPT (Interior Point
OPTimizer) algorithm is used. IPOPT is a state-of-the-art
solver for large-scale NLP problems.

Plant modeling (Step 1 ) is done in XCos. The systems
are built from Coselica blocks. For simulation in XCos
a Modelica file of the model is generated, which can be
used in JModelica for simulation and optimization. Step 2
is already done in JModelica. The generated Modelica
file is compiled and loaded into JModelica. Simulation
options (input, solver properties, simulation time...) can be
defined. Then the model is simulated and the results can be
plotted for verification. Step 3 includes input design and
is also done in the JModelica environment. For calculation
of system sensitivities which are necessary for input design
(8) and (7), the sensitivity equations must be known. Up
to now this equations have to be added manually. 2

6. EXPERIMENT: CART AND PENDULUM SYSTEM

The well-known cart and pendulum example in gantry
crane configuration shall serve as a reference experiment,
see Fig. 2. The cart with mass m1 is driven by a dc-drive
with external excitation, see Fig. 3. In the following, we
assume a very small electrical time constant (τel = LA

RA

with armature inductance LA and resistance RA) com-
pared to the mechanical one. By means of model reduction,
i.e. LA → 0, we introduce equivalent parameters (10)
incorporating the whole drive-train (drive constant km,
inertia JG, transmission ratio n, gear pinion radius r,
and some mechanical damping d1) into the mathematical
model of the cart. For further parameters refer to Tab. 1.

Table 1. System parameters

Name Description

m2 mass pendulum
l pendulum length
d1 friction coefficient cart
d2 friction coefficient pendulum
g acceleration due to gravity

The nonlinear system equations for this plant can be
computed using the Lagrange formalism, see Grabmair
et al. (2014), and leads to

2 JModelica has also implemented the IDAS solver that can compute
sensitivities, see remark in Section 6.3
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Fig. 2. Cart and pendulum system
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Fig. 3. Armature equivalent circuit and power conversion
of the dc-drive with external excitation

(
v̇
ω̇

)
=

 m̃1 +m2
1

2
m2l cos(φ)

1

2
m2l cos(φ)

1

3
m2l

2


−1

·

1

2
m2l sin(φ)ω

2 − d̃1v + F

−1

2
m2gl sin(φ)− d2ω

 (9)

with system states cart position x, pendulum angle φ and

the corresponding velocities (v, ω)
T
. Further, we introduce

some abbreviations

m̃1 = m1 + JG

(n
r

)2

d̃1 = d1 +
n2k2m
r2RA

(10)

We assume an equivalent cart mass m̃1 = 2kg, an equiva-
lent linear friction coefficient d̃1 = 15 Ns

m , a pendulum mass

m2 = 1kg and a rotational friction coefficient d2 = 0.5 sNm
rad

for all following simulations. Note that the ordinary differ-
ential equations (ODEs) from (9) are not used in JMod-
elica. Modelica works with DAE’s obtained automatically
from XCos. Even if the tool-chain does not require the
model from (9), at the moment, we need it to compute the
sensitivities Sx in an extended model, see (11).

Fig. 4. Cart and pendulum plant built from Coselica blocks

Fig. 5. Cart and pendulum plant simulation in JModelica;
compare ODEs and Coselica

6.1 Plant modeling in XCos

As mentioned before, the plant is built by connecting
blocks from Coselica libraries, see Fig. 4. For the descrip-
tion of the blocks, also see Fig. 4.

6.2 Plant simulation in JModelica

When simulating the model in XCos a Modelica file is
generated, which is compiled and loaded in JModelica. For
tool-chain verification the simulation of the Coselica-model
is compared to the signals of the ODE model. As input
force we assume a sine wave with amplitude A = 3N and
frequency f = 1Hz. For the simulation results, see Fig. 5.
It is visible that the system behaviors match perfectly.

6.3 Optimal input design

The optimization problem for input design (8) shall be
specified in more detail for this example. We assume that
all system states are zero at time t0 = 0s. After the
movement at te = 5s the cart is located at position
xe with pendulum oscillation suppressed. Furthermore
there are constraints concerning input signal [uLO, uHI ]
and system states [xLO,xHI ] as common in engineering
tasks, see (12). The pendulum mass is assumed unknown
and constant. Position x and pendulum angle φ are the
measured outputs.

Remark: At the moment, the sensitivity equations (11)
which are used in (8) for input design are added manu-
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ally. In later versions the sensitivities will be computed
automatically by the IDAS solver implemented in JMod-
elica. The parameter vector including all physical plant

parameters is p =
(
m̃1, d̃1,m2, d2, l

)T

and the state vec-

tor x = (x, φ, v, ω)
T
. The forward sensitivity differential

equation system has the dimension n × np and can be
written as

Ṡx1,p1 · · · Ṡx1,p5

...
. . .

...
Ṡx4,p1

· · · Ṡx4,p5

 =
∂f

∂x

Sx1,p1 · · · Sx1,p5

...
. . .

...
Sx4,p1 · · · Sx4,p5

+
∂f

∂p

(11)

with Sxi,pj = ∂xi

∂pj
, the number of system states n and np

the number of system parameters.

For subsequent engineering purposes, all possible param-
eter sensitivites are already calculated using (11). In this

simulation experiment the output sensitivity matrix ∂y
∂p ,

see (7), consists of various elements of (11) depending on
measurable outputs and parameters of interest. Note that
we assume to measure x and φ, and identify m2.

The optimization problem can be phrased as

max
u

∥F(u,p)∥A−criterion

ẋ = f(x,u,p)

y = h(x,u,p)

x(t0) = 0

x(te) = (0.5m, 0, 0, 0)T

u ∈ [−5V, 5V]

x ∈ [0, 0.5m]

φ ∈ [−0.5 rad, 0.5 rad]

v ∈ [0, 0.5
m

s
]

ω ∈ [−0.5
rad

s
, 0.5

rad

s
]

Ṡx =
∂f(x,u,p)

∂x
· Sx +

∂f(x,u,p)

∂p
, t > 0

Sx(0) =
∂x0

∂p

Sy =
∂h(x,u,p)

∂x
· Sx +

∂h(x,u,p)

∂p
, t ≥ 0 (12)

with t0 = 0 and te = 5s.

The Fisher matrix may be detailed as per

F(u,p) =
N∑

k=1

∂y

∂p

∣∣∣∣T
p,tk

(
σ2
1 0
0 σ2

2

)−1
∂y

∂p

∣∣∣∣
p,tk

∂y

∂p

∣∣∣∣
p,tk

=


∂x

∂m2

∣∣∣∣
p,tk

∂φ

∂m2

∣∣∣∣
p,tk

 . (13)

We assume σ2
1 = σ2

2 . After adding the sensitivity equations
to the auto-generated Modelica model the optimization

Fig. 6. Cart and pendulum - simulation with optimal input

Fig. 7. Cart and pendulum - simulation with optimal input

problem (12) is implemented in JModelica, subsequently
the solution may be computed. The dynamic optimization
problem (12) is discretized by collocation. The dynamic
model variable profiles are approximated by piecewise
polynomials. This method of approximation corresponds
to a fixed step implicit Runge-Kutta scheme, where ne

describes the number of steps and ncp describes the num-
ber of collocation points within each step. The result-
ing nonlinear program (NLP) is solved by the nonlinear
IPOPT solver. For more details, the reader is referred to
Modelon AB (2014). The optimization result is given in
Fig. 6 and Fig. 7, where the number of elements ne = 100
and the number of collocation points per element ncp = 1
are set as options for the CasADi- and collocation-based
optimization algorithm.

In the figures, optimization constraints are represented
by green dashed lines and the desired final-states in red
dotted-dashed lines. As expected, the car reaches its final
position at final-time. Cart speed, angle and angular
velocity are forced to zero.

6.4 Parameter identification

The optimization problem (12) is solved under the as-
sumption that the pendulum mass is well-excited with
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constraints for our laboratory experiment and therefore,
can be identified with high accuracy. For testing the identi-
fication of the pendulum mass by simulation, the solution
of the optimization problem from (4) is employed. The
measurement ym is modeled in the simulation experiment
with the true system parameters and additional noise.
y(p̂) denotes the simulation with estimated parameters.

The identification optimization problem for this particular
experiment is given by

min
m̂2

N∑
k=1

(xm(tk)− x(m̂2, tk))
2
+ (φm(tk)− φ(m̂2, tk))

2

subject to constraint m̂2 ∈ [0.1 kg, 2 kg]

and ne = 500 and ncp = 1 as options for the CasADi- and
collocation-based optimization algorithm.

In Fig. 8 and Fig. 9 a comparison between measurement
(simulation with nominal parameters and noise) and sim-
ulation signals with the estimated pendulum mass are
shown. Neglecting output noise we get an estimated value
m̂2 = 1.0 kg. For pure testing purpose, we choose noisy
measurement signals (white noise with zero mean, σ1 =
0.01m and σ2 = 0.01 rad) for identification. The value of
the identified parameter deteriorated to m̂2 = 1.017 kg.

7. CONCLUSION

We have sketched an open-source tool-chain for input de-
sign, optimal control and parameter identification. Start-
ing with the physics-based modeling in XCos we export
the entire model to JModelica. JModelica supports simu-
lation and optimization of models which are written in
Modelica code. Based on high-performant optimization
algorithms (CasADi with IPOPT solver) an information
rich input signal is computed. Parameter identification
is rephrased in solving an optimization problem. Up to
now, the sensitivity equations, necessary for optimal in-
put design, are added manually. In the near future, the
JModelica implemented IDAS solver will be used. This
solver computes already the sensitivities automatically. So
far in our work, these steps lived on the assumption that
for the input design the system parameters are known
well. Therefore, an iterative process of input design and

Fig. 8. Cart and pendulum - quality of the parameter
estimation

parameter identification will be developed for relaxing this
assumption.
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